pub struct Secp256k1 {
/// The underlying raw `[u8; 64]` data of the signature.
bits: [u8; 64],
}
Expand description
A secp256k1 signature.
Fields
bits: [u8; 64]
The underlying raw [u8; 64]
data of the signature.
Implementations
pub fn new() -> Self
pub fn new() -> Self
Creates a zeroed out instances of a Secp256k1 signature.
Returns
[Secp256k1] - A zero secp256k1 signature.
Examples
use std::crypto::Secp256k1;
fn foo() {
let new_secp256k1 = Secp256k1::new();
assert(new_secp256k1.bits()[0] == 0u8);
assert(new_secp256k1.bits()[63] == 0u8);
}
pub fn bits(self) -> [u8; 64]
pub fn bits(self) -> [u8; 64]
Returns the underlying raw [u8; 64]
data of the signature.
Returns
- [[u8; 64]] - The raw data of the signature.
Examples
use std::crypto::Secp256k1;
fn foo() -> {
let new_secp256k1 = Secp256k1::new();
assert(new_secp256k1.bits()[0] == 0u8);
}
pub fn recover(
self,
message: Message,
) -> Result<PublicKey, SignatureError>
pub fn recover(
self,
message: Message,
) -> Result<PublicKey, SignatureError>
Recover the public key derived from the private key used to sign a message.
Returns a Result
to let the caller choose an error handling strategy.
Additional Information
Follows the Secp256k1 elliptical curve.
Arguments
message
: [Message] - The signed data.
Returns
- [Result<PublicKey, SignatureError>] - The recovered public key or an error.
Examples
use std::crypto::{Message, PublicKey, Secp256k1};
fn foo() {
let signature: Secp256k1 = Secp256k1::from((
0xbd0c9b8792876713afa8bff383eebf31c43437823ed761cc3600d0016de5110c,
0x44ac566bd156b4fc71a4a4cb2655d3dd360c695edb17dc3b64d611e122fea23d
));
let message: Message = Message::from(0xee45573606c96c98ba970ff7cf9511f1b8b25e6bcd52ced30b89df1e4a9c4323);
let public_key: PublicKey = PublicKey::from((
0xD73A188181464CC84AE267E45041AEF6AB938F278E636AA1D02D3014C1BEF74E,
0xC44415635160ACFC87A84300EED97928C949A2D958FC0947C535F7539C59AE75
));
// A recovered public key pair.
let result_public_key = signature.recover(message);
assert(result_public_key.is_ok());
assert(result_public_key.unwrap() == public_key);
}
pub fn address(
self,
message: Message,
) -> Result<Address, SignatureError>
pub fn address(
self,
message: Message,
) -> Result<Address, SignatureError>
Recover the address derived from the private key used to sign a message.
Returns a Result
to let the caller choose an error handling strategy.
Additional Information
Follows the Secp256k1 elliptical curve.
Arguments
message
: [Message] - The signed data.
Returns
- [Result<Address, SignatureError>] - The recovered Fuel address or an error.
Examples
use std::crypto::{Message, Secp256k1};
fn foo() {
let address = Address::from(0x7AAE2D980BE4C3275C72CE5B527FA23FFB97B766966559DD062E2B78FD9D3766);
let signature: Secp256k1 = Secp256k1::from((
0xbd0c9b8792876713afa8bff383eebf31c43437823ed761cc3600d0016de5110c,
0x44ac566bd156b4fc71a4a4cb2655d3dd360c695edb17dc3b64d611e122fea23d
));
let message: Message = Message::from(0xee45573606c96c98ba970ff7cf9511f1b8b25e6bcd52ced30b89df1e4a9c4323);
// A recovered Fuel address.
let result_address = signature.address(message);
assert(result_address.is_ok());
assert(result_address.unwrap() == address);
}
pub fn evm_address(
self,
message: Message,
) -> Result<EvmAddress, SignatureError>
pub fn evm_address(
self,
message: Message,
) -> Result<EvmAddress, SignatureError>
Recover the EVM address derived from the private key used to sign a message.
Returns a Result
to let the caller choose an error handling strategy.
Additional Information
Follows the Secp256k1 elliptical curve.
Arguments
message
: [Message] - The signed data.
Returns
- [Result<EvmAddress, SignatureError>] - The recovered evm address or an error.
Examples
use std::{vm::evm::evm_address::EvmAddress, crypto::{Secp256k1, Message}};
fn foo() {
let evm_address = EvmAddress::from(0x7AAE2D980BE4C3275C72CE5B527FA23FFB97B766966559DD062E2B78FD9D3766);
let signature: Secp256k1 = Secp256k1::from((
0xbd0c9b8792876713afa8bff383eebf31c43437823ed761cc3600d0016de5110c,
0x44ac566bd156b4fc71a4a4cb2655d3dd360c695edb17dc3b64d611e122fea23d
));
let message: Message = Message::from(0xee45573606c96c98ba970ff7cf9511f1b8b25e6bcd52ced30b89df1e4a9c4323);
// A recovered evm address.
let result_address = signature.evm_address(message).unwrap();
assert(result_address.is_ok());
assert(result_address.unwrap() == evm_address);
}
pub fn verify(
self,
public_key: PublicKey,
message: Message,
) -> Result<(), SignatureError>
pub fn verify(
self,
public_key: PublicKey,
message: Message,
) -> Result<(), SignatureError>
Verify that a signature matches given public key.
Arguments
public_key
: [PublicKey] - The public key to verify against.message
: Message - The signed data.
Returns
- [Result<(), SignatureError>] - An Ok result or an error.
Examples
use std::crypto::{Message, PublicKey, Secp256k1};
fn foo() {
let signature: Secp256k1 = Secp256k1::from((
0xbd0c9b8792876713afa8bff383eebf31c43437823ed761cc3600d0016de5110c,
0x44ac566bd156b4fc71a4a4cb2655d3dd360c695edb17dc3b64d611e122fea23d
));
let message: Message = Message::from(0xee45573606c96c98ba970ff7cf9511f1b8b25e6bcd52ced30b89df1e4a9c4323);
let public_key: PublicKey = PublicKey::from((
0xD73A188181464CC84AE267E45041AEF6AB938F278E636AA1D02D3014C1BEF74E,
0xC44415635160ACFC87A84300EED97928C949A2D958FC0947C535F7539C59AE75
));
// A valid result
let result = signature.verify(public_key, message);
assert(result.is_ok());
}
pub fn verify_address(
self,
address: Address,
message: Message,
) -> Result<(), SignatureError>
pub fn verify_address(
self,
address: Address,
message: Message,
) -> Result<(), SignatureError>
Verify that an evm address matches given public key.
Arguments
address
: [Address] - The address to verify against.message
: Message - The signed data.
Returns
- [Result<(), SignatureError>] - An Ok result or an error.
Examples
use std::crypto::{Message, Secp256k1};
fn foo() {
let signature: Secp256k1 = Secp256k1::from((
0xbd0c9b8792876713afa8bff383eebf31c43437823ed761cc3600d0016de5110c,
0x44ac566bd156b4fc71a4a4cb2655d3dd360c695edb17dc3b64d611e122fea23d
));
let message: Message = Message::from(0xee45573606c96c98ba970ff7cf9511f1b8b25e6bcd52ced30b89df1e4a9c4323);
let address = Address::from(0xD73A188181464CC84AE267E45041AEF6AB938F278E636AA1D02D3014C1BEF74E);
// A valid result
let result = signature.verify_address(address, message);
assert(result.is_ok());
}
pub fn verify_evm_address(
self,
evm_address: EvmAddress,
message: Message,
) -> Result<(), SignatureError>
pub fn verify_evm_address(
self,
evm_address: EvmAddress,
message: Message,
) -> Result<(), SignatureError>
Verify that an address matches given public key.
Arguments
evm_address
: [EvmAddress] - The evm address to verify against.message
: Message - The signed data.
Returns
- [Result<(), SignatureError>] - An Ok result or an error.
Examples
use std::{crypto::{Message, Secp256k1}, vm::evm::evm_address::EvmAddress};
fn foo() {
let signature: Secp256k1 = Secp256k1::from((
0xbd0c9b8792876713afa8bff383eebf31c43437823ed761cc3600d0016de5110c,
0x44ac566bd156b4fc71a4a4cb2655d3dd360c695edb17dc3b64d611e122fea23d
));
let message: Message = Message::from(0xee45573606c96c98ba970ff7cf9511f1b8b25e6bcd52ced30b89df1e4a9c4323);
let evm_address = EvmAddress::from(0xD73A188181464CC84AE267E45041AEF6AB938F278E636AA1D02D3014C1BEF74E);
// A valid result
let result = signature.verify_evm_address(evm_address, message);
assert(result.is_ok());
}
Trait Implementations
impl AbiEncode for Secp256k1
impl AbiEncode for Secp256k1
pub fn abi_encode(self, buffer: Buffer) -> Buffer
impl AbiDecode for Secp256k1
impl AbiDecode for Secp256k1
pub fn abi_decode(refmut buffer: BufferReader) -> Self
impl Eq for Secp256k1
impl Eq for Secp256k1
pub fn eq(self, other: Self) -> bool
pub fn neq(self, other: Self) -> bool
pub fn neq(self, other: Self) -> bool
Evaluates if two values of the same type are not equal.
Additional Information
This function is inherited when eq()
is implemented.
Arguments
other
: [Self] - The value of the same type.
Returns
- [bool] -
true
if the two values are not equal, otherwisefalse
.
Examples
struct MyStruct {
val: u64,
}
impl Eq for MyStruct {
fn eq(self, other: Self) -> bool {
self.val == other.val
}
}
fn foo() {
let struct1 = MyStruct { val: 10 };
let struct2 = MyStruct { val: 2 };
let result = struct1 != struct2;
assert(result);
}